
3-Channel EMI-Filter with ESD-Protection

Features

- Ultra compact LLP75-7A package
- 3-channel EMI-filter and ESD-protection
- · Low leakage current
- Line resistance of 30 Ω
- Typical cut-off frequency f_{3dB} = 100 MHz
- ESD-protection acc. IEC 61000-4-2
 - ± 30 kV contact discharge
 - ± 30 kV air discharge
- · Lead (Pb)-free component
- Component in accordance to RoHS 2002/95/EC and WEEE 2002/96/EC

Marking (example only)

Dot = Pin 1 marking XX = Date code YY = Type code (see table below)

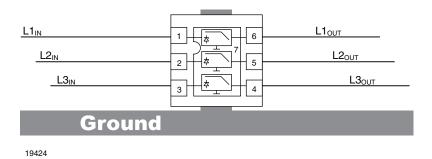
Ordering Information

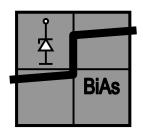
Device name	Device name Ordering code		Minimum order quantity		
VEMI353A-HA3-GS08		3000	15 000		

Package Data

Device name	Package name	Marking code	Weight	Molding compound flammability rating	Moisture sensitivity level	Soldering conditions
VEMI353A-HA3	LLP75-7A	9A	5 mg	UL 94 V-0	MSL level 1 (according J-STD-020)	260 °C/10 s at terminals

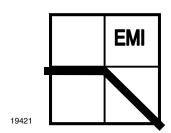
Absolute Maximum Ratings


Parameter	Test conditions	Symbol	Value	Unit	
Peak pulse current	All I/O pin to pin 9; acc. IEC 61000-4-5; t _p = 8/20 μs; single shot	I _{PPM}	4	Α	
ESD immunity	Contact discharge acc. IEC61000-4-2; 10 pulses	M	± 30	kV	
	Air discharge acc. IEC61000-4-2; 10 pulses	V _{ESD}	± 30		
Operating temperature	Junction temperature	T _J - 40 to + 12		°C	
Storage temperature	T _{STG}	T _{STG}	- 55 to + 150	°C	


^{*} Please see document "Vishay Green and Halogen-Free Definitions (5-2008)" http://www.vishay.com/doc?99902

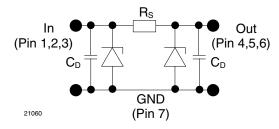
Application Note:

With the VEMI353A-HA3 3 different signal or data lines can be filtered and clamped to ground. Due to the
different clamping levels in forward and reverse direction the clamping behavior is <u>Bi</u>directional and
<u>Asymmetric</u> (BiAs).



The 3 independent EMI-filter are placed between

pin 1 and pin 6, pin 2 and pin 5, and pin 3 and pin 4


They all are connected to a common ground pin 7 on the backside of the package. Each filter is symmetrical so that all ports (pin 1 to 6)

can be used as input or output.

19420

The circuit diagram of one EMI-filter-channel shows two identical Z-diodes at the input to ground and the output to ground. These Z-diodes are characterized by the breakthrough voltage level (V_{BR}) and the diode capacitance (C_D). Below the breakthrough voltage level the Z-diodes can be considered as capacitors. Together with these capacitors and the line resistance R_S between input and output the device works as a low pass filter. Low frequency signals (f < f_{3dB}) pass the filter while high frequency signals (f > f_{3dB}) will be shorted to ground through the diode capacitances C_D .

Each filter is symmetrical so that both ports can be used as input or output.

2

Electrical Characteristics

Ratings at 25 °C, ambient temperature unless otherwise specified

VEMI353A-HA3

Parameter	Test conditions/remarks	Symbol	Min.	Тур.	Max.	Unit
Filter channels	Number of channels which can be protected	N _{channel}	hannel		3	channel
Reverse stand off voltage	at $I_R = 1 \mu A$ each input to pin 2	V _{RWM}	5			V
Reverse current	at V _R = 5 V each input to pin 2	I _R			1	μΑ
Reverse break down voltage	Each input to pin 2 at I _R = 1 mA	V_{BR}	6			٧
Pos. clamping voltage	at I _{PP} = 1 A applied at the input, measured at the output; acc. IEC 61000-4-5	V _{C-out}			7.8	٧
	at $I_{PP} = I_{PPM} = 4$ A applied at the input, measured at the output; acc. IEC 61000-4-5	V _{C-out}			8	V
Neg. clamping voltage	at I _{PP} = - 1 A applied at the input, measured at the output; acc. IEC 61000-4-5	V _{C-out}	- 1			V
	at I _{PP} = I _{PPM} = - 4 A applied at the input, measured at the output; acc. IEC 61000-4-5	V _{C-out}	- 1.2			V
Input capacitance	at V _R = 0 V; f = 1 MHz	C _{IN}		60		pF
	at V _R = 2.5 V; f = 1 MHz	C _{IN}		37		pF
ESD-clamping voltage	at ± 30 kV ESD-pulse acc. IEC 61000-4-2	V _{CESD}		7.5		V
Line resistance	Measured between input and output; $I_S = 10 \text{ mA}$	R _S	27	30	35	Ω
Cut-off frequency	$V_{IN} = 0 \text{ V}$; measured in a 50 Ω system	f _{3dB}		100		MHz

Typical Characteristics T_{amb} = 25 °C, unless otherwise specified

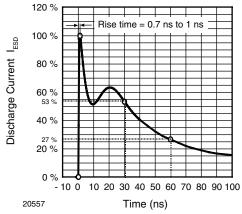


Figure 1. ESD Discharge Current Wave Form acc. IEC 61000-4-2 (330 Ω /150 pF)

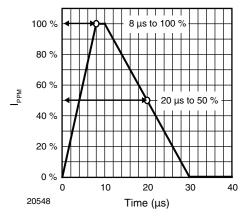


Figure 2. 8/20 µs Peak Pulse Current Wave Form acc. IEC 61000-4-5

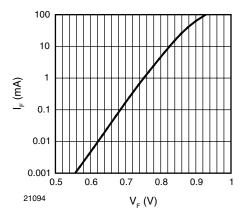


Figure 3. Typical Forward Current I_F vs. Forward Voltage V_F

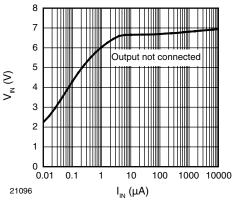


Figure 4. Typical Input Voltage V_{IN} vs. Input Current I_{IN}

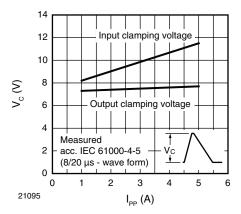


Figure 5. Typical Clamping Voltage V_C vs. Peak Pulse Current I_{PP}

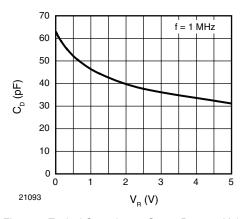


Figure 6. Typical Capacitance C_{D} vs. Reverse Voltage V_{R}

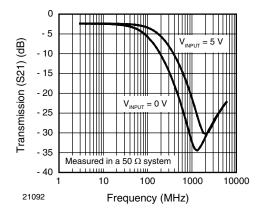
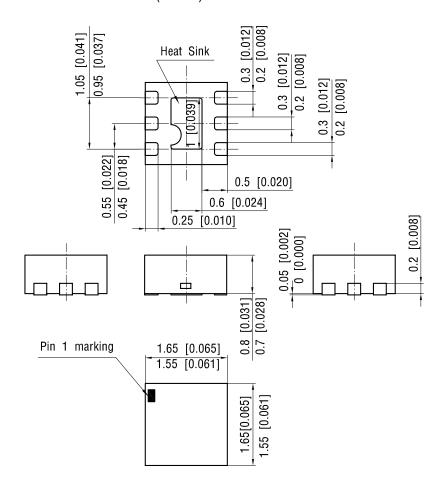
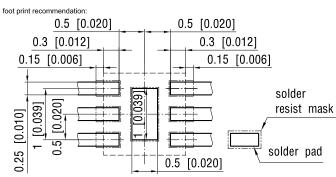




Figure 7. Typical Small Signal Transmission (S21) at $\,$ Z $_{O}$ = 50 $\,$ Ω

Package Dimensions in millimeters (inches): LLP75-7A

Document no.:S8-V-3906.02-002 (4) Created - Date: 20.December.2004 Rev. 3 - Date: 21.March.2006

Ozone Depleting Substances Policy Statement

It is the policy of Vishay Semiconductor GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively.
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA.
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany

6

Document Number 84728

Rev. 1.4, 05-Sep-08

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Revision: 18-Jul-08

Document Number: 91000 www.vishay.com